
AD-A113 857 NAVAL POSISAOUATI -SCHOOL NONTEREY CA F/6 9/9
SOPTWAP1 NAINTEMNCESIMPROVENENT THROUGH 3(7783 CIVELOPMMN ST-TC(U)
M1 " N F SCEW(WI~ND

UNCLA S5 IFI2II-U A*-O L

IIIND

- - IIIIILgI"" 1. E*4 11112.2

1111 I1 III12
* ~1. 25 N ii .

MICROCOPY RESOLUTION TEST CHART

NADONAL BURLAU OF STANDARDS 963-A

NPS-54-82-002

I NAVAL POSTGRADUATE SCHOOL
Monterey, California

iF

SOFTWARE MAINTENANCE: IMPROVEMENT

THROUGH BETTER DEVELOPMENT

STANDARDS AND DOCUMENTATION

Norman F. Schneidewind

February 1982

Final Report: 1 Jan 80 to I Tan 82

LAi
--.j Approved for public release; distribution unlimited.

Prepared for:
The Trident Command and Control Systems
Maintenance Agency
Newport, Rhode Island

82 04 08 006

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund David R. Schrady
Superintendent Acting Provost

The work reported herein was supported by the Trident Cozmmand and
Control Systems Maintenance Agency.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Professor of Computer Science

Reviewed by: Released by:

CARL R. JON, Chairman WILLIAM M. TOLLES
i ive Sciences Department Dean of Research

. S
-.--- ---- - -

Unclassified
SECURITY CLASSIFICAT ION 0F THIS PAGE (When Does Entered)

REPORT DOCUMENTATION PAGE BEFORE__COMPLETING__FORM

I REPOR mumogn2. GOVT ACCESSION NOa 3. RECIPIEN 5- CATALOG HNGRER

4. TITLE (aid ulerifl) 5 ip . TYPE or REPORT a P91111O0 COVERED

Final Report
SOFTWARE MAINTENANCE: IMPROVEM4ENT THROUGH 1 Jan 80 to 1 Jan 82
]BETTER DEVELOPMENT STANDARDS AND DOCUMENTATION S. PERFORMING ORG. REPORT HU~saER

7. AUTHOR(@) I.CONTRACT OR GRANT NUMUERWe)

Norman F. Schneidewind

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA A WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, California 93940 N4216680WR00007

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Trident Command and Control Systems 22 February 1982
Maintenance Agency IS. NURSEIIR OF PAGES
Newport, Rhode Island 41

14. MONITORING AGENCY NAME A AOORESS(it difI.,int howa Cofrwlfia Office) IS, SEICURITY CLASS. (of ONle n6ove)

Unclassified

IS. DIECASSIFICATION/ DOWNGRADING
SCA EDUL

IS. DISTRISIUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIIDUTION STATEMENT (of the 6bIraof etered in Week* Of. ci dIIIt how Repave)

18. SUPPLEMENTARY NOTES

I9. KEY WORDS (centiuu oen reverse mid. #I aeessay and Idefr 6F week .bor)

Software maintenance Military Standard MIL-STSD'l679
Software maintainability Weapons Specification ifS 8S06
Software standards Traceability

20. AUSTRACT (Cerna. 00 rOWe *#de It nncesar and identity 6 61" Uoonebe)
Software maintenance is frequently the most expensive phase of the software

life cycle. It is also the phase which has received insufficient attention by
management and software developers. Software standards have improved the abilit
of the software community to develop and design software. Unfortunately, most
standards do not deal with the miintenance phase in a substantive way. Since
maintainability has to be designed into the software and cannot be achieved
after the software is delivered, it is necessary to have software standards
which explicitly incorporate reguirements fo an aility. Agcodinlv I

DD 'PS1473 COEITION OF I NO0V 4S is OSSOLETE Ucasfe
S/N012-14 401SEgCURITY CLASSFICATION OF THIS PAGE (0014n 0. &-114

4 -- ___ ____ ___ ____ ___ ____ _AM

.-this report suggests design criteria for achieving maintainability and
evaluates Weapons Specification WS 8506 and MIL-STD 1679 against these
criteria. Using these documents as typical examples of military soft-
ware standards, recommendations are made for improving the maintain-
ability aspects of software standards.

-For

DTIC PAN

1*"01rco

v~op~. AvallabSil o*
0istC de

Djgt I""" 04/o

TABLE OF CONTENTS

Page No.

BACKGROUND ----- 2

I. INTRODUCTION --- 4

II. OBJECTIVES --- 6

III. APPROACH ------------------------------------- 7

IV. GOOD MAINTENANCE PRACTICES 8

A. Design Approaches for Achieving Good 8--------------- 8

Maintainability

B. Specification and Documentation Requirements Li

for Achieving Good Maintainability

C. Testing Approaches for Achieving Good 5--------------- is

Maintainability

V. EVALUATION OF WEAPONS SPECIFICATION WS 8506 ---------- 19

VI. EVALUATION OF MILITARY STANDARD MIL-STD 1679 ------------ 27

REFERENCES -------------------------------------- 34

DISCLAIMER ------------------------------ 36

DISTRIBUTION LIST --------------------------------------- 37

1.o

BACKGROUND

This report addresses the maintenance phase of the software life cycle

and the methodologies and procedures which, if employed during the soft-

ware development and design phases, will improve software maintainability.

We define maintenance as that activity which is concerned with making

changes to software for the purpose of improving or correcting the soft-

ware. Maintainability is a property of the software which makes the

maintenance activity easy to perform, i.e., changes to the software are

easy to incorporate and do not lead to new errors in the software.

The Trident Command and Control Systems Maintenance Agency (CCSMA)

tasked the Naval Postgraduate School to study and evaluate various Navy

software standards with regard to their applicability to software

maintenance. The question posed was: Could these standards, accompanied

by basic program documentation, such as a listing, provide adequate

guidance for a new programmer to maintain software, such as that found

in the Trident Command and Control Subsystem? Related to this question

is the critical relationship between development and maintenance. For

the most part, the standards and documentation techniques which were

reviewed (e.g., MIL-STD 1679) were designed to be used for software

development and not for maintenance, specifically. This situation illus-

trates the fundamental problem in software maintenance: inadequate

attention to this important and high cost phase of the software life

cycle. Since the conditions for future maintenance problems are created

during development and design, the approach taken in this study was to

look to these phases of the life cycle as the areas having the greatest

2

potential for improving the maintainability of software. This concept

suggests that maintainability must be designed into the software and

that development methodology has a more significant effect on main-

tainability than maintenance practices themselves. However, pre-

maintenance phase activities should not be emphasized to the exclusion

of maintenance phase activities. Maintenance practices, such as patch-

ing programs and deficiencies in testing subsequent to a change (e.g.,

lack of regression testing), obviously exert a deleterious effect on

the quality of software. Unfortunately improvements in maintenance

practices cannot cure underlying problems which are introduced into the

software when it is specified and designed. Hence it is clear that

significant gains in maintainability can only be achieved by recog-

nizing maintainability objectives as an integral part of development

and design.

Consistent with the above problem approach, this report begins with

a discussion of the findings of a number of researchers, in the areas of

software development and maintenance practices, which bear on the problem

of improving software maintainability. This is followed by an evalua-

tion of Navy weapon system software standards (WS 8506 and MIL-STD 1679),

from the standpoint of their effectiveness as aids to the maintenance

programmer.

3

I. INTRODUCTION

Software maintenance is one of the most expensive phases of the

system life cycle. One author suggests it is as high as 67 per cent of

the effort in large-scale systems [ll. Despite this fact, maintenance

requirements receive little attention during system development. There

are many reasons for this situation, but three stand out:

1. Maintenance is considered less glamorous, interesting and

challenging as compared to system design and programming; hence, there

is little incentive for computer personnel to become involved in main-

tenance activities.

2. During development it is often too early in the project to

foresee problems which may occur during maintenance; as a consequence

maintainability is not provided in the system design.

3. Project management does not always recognize that maintainabil-

ity considerations should be an integral part of the design process.

One result of this lack of attention to maintainability require-

ments during design is loss of treaceability. This is defined as the

ability to identify the technical information which pertains to a

software error which has been detected during the maintenance phase

and thereby trace the error to the applicable design specifications

and user requirements statements. The same traceability capability

is also required for software improvements which are made during the

maintenance phase. It is clear that if significant improvements are

to be made in software maintainability, requirements for maintenance

4

must be made an integral part of the software specification develop-

ment and design process. In fact, as mentioned later, some software

developers recommend that software design be oriented around the need to

maintain the software in its operating environment.

II. OBJECTIVES

The objectives of this report are:

1. In particular, to evaluate Weapons Specification (WS) 8506 [2]

and Military Standard (MIL-STD) 1679 [3] with regard to their suitability

for computer program maintenance in embedded computer systems.

2. In general, to discuss and propose software development prac-

tices which will lead to improved maintainability for any software

system.

In 1. emphasis will be on the evaluation of the ability of these

documents to provide for traceability during program maintenance.

6

III. APPROACH

The WS 8506 and MIL-STD 1679 documents were examined with regard to

their effectiveness for software maintenance purposes--in particular,

their capability for providing traceability. In addition to this specific

aspect, all sections of these documents which are applicable to maintenance

were reviewed, and strong and weak points were noted. A major approach

in this review was the use of a rich body of literature in software

engineering which was employed as an information source for suggesting

improvements in the documents. This literature and our concept of the

characteristics of good specifications and standards for maintenance

were used to develop a set of criteria for judging WS 8506 and MIL-STD

1679.

7

IV. GOOD MAINTENANCE PRACTICES

A. Design Approaches for Achieving Good Maintainability

As described in Yourdon [41, a good software design and maintain-

ability strategy is that of divide and conquer. The cost of implemen-

tation will be minimized when parts of the problem are manageably small

and separately solvable. Similarly, the cost of maintenance will be

minimized when parts of the system are easily related to the application

(a facet of traceabilty), manageably small and separately correctable.

This modularity concept should be incorporated in weapons systems

software specifications and standards. Furthermore, pieces of the

problem should be independent. Highly interrelated parts of the problem

should be in the same piece of the system and unrelated parts should

reside in unrelated pieces of the system. Finally, implementation and

maintenance will be minimized when each relationship between pieces of

the system corresponds only to a relationship between pieces of the

problem.

Of great interest for maintenance is the fact that it is very

difficult to simplify the structure of a program after the program has

been written. If modularization is undertaken at this point, new

interfaces must be designed, thus possibly increasing the program's

complexity. Also the entire program must be checked to determine which

parts should be changed and which parts should remain unchanged, as a

result of modularization. Thus once reduced to code, the structural

8

complexity of a program is essentially fixed; therefore, it is imprac-

tical to simplify software during the maintenance phase.

Peters [5] writes that much of the difficulty of software design

stems from the fact that the problem we are attempting to solve is

changing while we are solving it. Some of these changes are made by the

designer as he obtains a better understanding of the problem, and other

changes come from the user. In either case destabilization of the pro-

ject and reduction in quality are the results. This situation illus-

trates the need for software specifications to require a formal change

procedure. Also, Peters warns agains the fanaticism of some promoters

of design methods and techniques, pointing out that each method is

directed at an idealized problem, not necessarily the one to be solved.

Although there may be some merit to this argument, the use of structured

design and programming techniques, albeit imperfect, would still achieve

consistency of documentation and a disciplined approach to design and

programing.

Lientz [6] has mentioned that a principle of good design is to

design with enhancements in mind because, in his survey, it was found

that most (48 per cent) of maintenance activities stemmed from enhance-

ments. This, of course, has a direct bearing on maintainability. This

is a point well made, but one that is difficult to implement in practice

due to the difficulty of anticipating future operational requirements

during the design stage. Since many enhancements are the result of

changing data requirements, it is possible, however, to avoid certain

practices which are detrimental to maintenance, such as imbedding data

9

descriptions in programs. Hence, a software specification and standard

should call for independence among program code, data and data bases.

Heninger and colleagues at the Naval Research Laboratory have

developed, in conjunction with the A7E aircraft computer system, the

concept of changes which are likely to occur and those which are not

likely to occur [7]. A related matter is the identification of functions

which maintainers would like to modify or remove easily, should the

need arise. Easy changes should correspond to the most likely changes.

These considerations evolve into a design principle of separating

things that will remain the same, no matter what changes are made in

the rest of the system, from those things that will be affected by the

changes. System documentation should only specify external behavior

without implying a particular implementation. For example, programs

should not have to be changed significantly if changes are made to the

hardware. In other words, software is described without reference to

hardware. Another example of the desired immutability of software is

that software should not change if data arrives in different formats

over different channels. Thus from the above, a software specification

and standard should specify that software functions be divided into

those which will (likely) change and those which will not (unlikely)

change. This approach will have the desirable result of causing the

designers and programmers to think about potential change requests

early in system development.

10

B. Specification and Documentation Requirements for Achieving Good

Maintainability

One of the best approaches for designing a system is to design the

documentation first. Considerable emphasis should be placed on docu-

mentation for maintaining software. Hegland suggests determining

documentation requirements at the beginning of a project [8]. Young C9]

lists the following types of documentation as being applicable to com-

puter software:

Type Project Phase Produced In

Functional Requirements Document Problem Definition

Data Requirements Document Problem Definition

System and Sub-System Specifications System Design

Program Specification System Design

Data Base Specification System Design

Test Plan System Design

User Manual Programming

OperatA.ons Manual Programming

Program Maintenance Manual Programming

Test Analysis Report Test

To the above should be added an Interfaces Specification, which would

be produced during system design. A software specification and standard

should require that the documentation to be provided on a project be

specified. It should also be required that the various levels of

documentation be consistent (e.g., sub-program specifications should be

consistent with the associated program specification).

11

Since good maintainability implies good readability [i0, the

following aids to readability should be required by the specification

and standard:

- Comments per line or related lines of code.

- References in the source listings to software specifications,

and approved changes and test plans.

- References in all documents to related documents.

Jones [11], based on his study of design and specification techniques,

concluded it is impossible to conduct a large software project without

considerable oral communication among project members; it is not

possible, in his view, to conduct a project mainly on the basis of

written documentation. One reason for this situation is that written

documentation may become so bulky that it ceases to be useful. As a

consequence, according to Jones, word processing costs have become the

second largest project expense, behind debugging costs. Despite this

result, we would not propose a reduction in project documentation; on

the contrary, the thoroughness of documentation should increase in

quality and quantity. However, the possibility of inundating a project

with paperwork does suggest the need for a specification and standard to

stipulate oral communication in the form of design reviews and walk-

throughs.

Balzer and Goldman [12] mention understandability as the first

criterion for judging specifications. Since the specifications are the

basis of a contract between contractor and customer, they must be clear

and unambiguous. It seems appropriate,therefore, for a software standard

to state that a primary objective of the project specifications is to

12

achieve understandability for both the contractor (developer) and cus-

tomer (user and maintainer). These authors also make the interesting

point that the specification itself must be testable. That is, for a

specification to be considered valid, it is necessary to demonstrate

that questions (tests) that one might pose concerning proposed system

operations can be answered satisfactorily by the specifications. Thus,

a software standard should require that the exercise of "testing" the

specification for validity be a part of the specification development

process. This consideration suggests the need for a specification model.

A carefully designed standard could serve as the model for writing a

specification. Furthermore,the authors state the importance of making

the specification independent of the implementation. Thus a specifica-

tion should state what is to be accomplished and not how it is to be

implemented. Consequently, another objective of specification develop-

ment which should be stated in a software standard is the objective of

achieving independence of the specifications from methods of implemen-

tation. The current interest in specification languages as a means of

obtaining consistency and understandability fo specifications has

implications for maintainability. Balzer and Goldman caution against

the use of a specification language which optimizes (reduces the resour-

ces required to execute a program) a system. This would have the

undesirable effects of reducing understandability, testability and

maintainability. Thus a software standard should stipulate that

optimization techniques are not to be employed unless their use is

unavoidable due to performance requirements. The reason for this is

13

that tricky coding techniques, designed to achieve optimization,

frequently lead to unmaintainable software.

Lastly, these authors discuss the effects of specification changes

on maintainability. They reco--nend that a specification be so designed

that changes can be localized and not have an effect on the rest of the

specification. However, there are i:-tances in which different specifi-

cations, such as system and program specifications, or different parts

of a given specification, must be related. Where these relationships

exist, this fact must be visible in the specification so that changes to

related specifications can be made when a change is made in a given

specification. Thus, with regard to the above two points, a software

standard should stipulate that parts of a specification are to be made

as independent as possible; but, where relationships must exist, these

relationships must be made explicit in the system documentation.

One of the problems with system development is lack of adherence to

stated software performance objectives over the software's life cycle.

As stated by McCall [13], little attention is given to identifying the

qualitiies that the software should exemplify over its life cycle. What

is needed is a clear statement of performance goals in the user require-

ments statement, consistency in the use of these goals in subsequent

stages of development and the ability to trace these goals forward,

from user requirements phase to maintenance phase; and backward, from

maintenance to user requirements. The achievement of these objectives

will be aided if a software specification and standard requires that

project documentation identify key performance requirements and state

how the implementation is to satisfy performance requirements.

14

C. Testinq Approaches for Achieving Good Maintainability

DeMillo and colleagues [14] believe a formal demonstration (test)

that a program is consistent with its specifications has value only if

the specifications are derived independently from the program. In

other words, the specifications should be derived from user require-

ments and not from the program. Then, if the specification reflects

user requirements and the program is in accordance with the specifica-

tion, a demonstration of the program would be meaningful. If the above

is not the case, the following situation could ensue: A program fails,

it is changed, and the changes are based on faulty specifications; or

the specifications are changed, and those changes are based on knowledge

of the program gained through the failure. In either case, the require-

ment of using independent criteria is no longer met. To guard against

this situation, it is necessary for a software standard to specify

that software design or performance specifications be independently

derived from user requirements and not, after-the-fact, from the program

design. Also, as pointed out by Ramamoorthy and colleagues [15] the

test plan should be independent of the design specification but depen-

dent upon user requirements. If this is not the case, an error in

translation from the user requirements to the specification will not be

caught if the test plan mirrors the specification. The error will be

caught if the test plan reflects user requirements. In other words,

software must be tested against what the software was intended to do

and not against what it is doing.

A big step towards error reduction in software would result from

the use of standard and certified reuseable modules [11]. This practice

15

, , : :,. -7 -- . , '-.. -

would obviate the need for module testing of reused modules. Only

integration testing would be necessary for these modules. The practical-

ity of this approach is less apparent in embedded computer applications

than in the commercial applications due to the nonstandard nature of

the former (e.g., uniqueness of some electronic warfare programs relative

to accounts payable routines). However, certain data transformation and

algorithmic routines may be standard (more or less). A Software standard

should require the use of reuseable modules wherever appropriate with

standard interfaces between modules.

Design problems are the chief source of programming errors and

detecting and removing errors are the major programing costs [11].

Therefore, it is of interest to identify the defect removal techniques

which work best with a given design approach. Jones [113 lists four

defect removal methods:

- Design reviews.

- Testing.

- Correctness proofs.

- Models or prototypes for verifying designs.

Two major categories of design error are: (1) leaving out needed user

functions, and (2) putting in functions that users don't need. Correct-

ness proofs and testing are not guaranteed to find these errors. However,

methods for depicting models of systems, such as Hierarchy Plus Input-

Process-Output (HIPO) charts [16] and Composite Design [17], in combina-

tion with design reviews, do provide considerable help in identifying

missing, unneeded, redundant and ambiguous functions and in specifying

how the functions should be related and coupled together. These methods

16

have an important ancillary benefit by providing a uniform method of

system documentation. In view of the above, it is important to not

rely on one or two methods, such as correctness proofs, to provide

product quality assurance, but rather to employ a variety of methods

where the choice of method will depend upon the objective of the test.

Thus, a software specification and standard should not be restrictive

in their stipulation of product quality assurance and testing methodolo-

gies. In fact, it would be worthwhile for these documents to enumerate

the various methods. (At this time, methods for verifying the design

against user requirements coupled with formal design reviews are the

best methods for assuring product quality.) In addition, consideration

should be given to the adoption of a documentation technique, such as

HIPO, as a standard for embedded computer development. As noted by

Pariseau [18] something like HIPO would have improved visibility and

documentation on the Carrier Based Tactical Support Center project. In

addition to the use of a documentation standard, one of the most impor-

tant improvements that could be made in the documentation specification

is the use of examples, perhaps ones from past projects. Wtihout

examples, specifications and standards appear ethereal to the designer

and programmer. A requirement for a software specification and standard

to show examples would significantly improve their usability. A related

consideration is that the choice of documentation technique should not

be left to the contractor (developer) alone to decide.

Schneidewind [19] states that stress or saturation testing is as

applicable to software as to hardware, particularly with regard to pre-

mission testing, when it is essential to identify marginal hardware and

17

4 - ___

software (e.g., software which operates satisfactorily under normal load

but fails--buffer overrun--under peak load) prior to the mission. One

cannot assume that the software remains invariant between missions,

because program changes could result from hardware errors (e.g., a

transient hardware error causes changes in programs residing in memory

or on disks), program maintenance activities or errors in revised pro-

grams which are distributed to the field.

Other test procedures which will improve maintainability are:

- Static testing (without execution).

- Dynamic testing (with execution).

- Regression testing (retest of all modules affected by a software

change).

- Testing specifically for the response of the system to unde-

sirable or unexpected events. This includes stress testing.

- Providing for the repeatability of tests.

- Use of an independent quality control group.

Thus a software specification and standard should make specific reference

to the above techniques.

18

V. EVALUATION OF WEAPONS SPECIFICATION WS 8506

The Fiscal Year 1979 Conmand and Control System Maintenance Agency

(CCSMA) System-Level Software Maintenance Approach and Transition Plan

[20] states that WS 8506 and MIL-STD 1659 will be among the predominant

factors for software delivered to CCSMA for the Trident ships. Further-

more, CCSMA is determining what software logic documentation is neces-

sary for maintenance and where the voids are. The transition plan from

the development to maintenance phase includes:

- Test and evaluation.

- Validation of documentation.

- Configuration management.

- Introduction of system into the fleet.

- Software maintenance.

- Quality assurance and audits.

The software delivered to CCSMA by the development agency will

include:

- Computer program performance specifications.

- Computer program design specifications.

- Interface design specifications.

- Computer program operator's manual.

- Test specification requirements.

- Test procedures.

Thus it is of interest to evaluate WS 8506 in this section and MIL-

STD 1679 in the next section, particularly with regard to their

19

suitability for maintenance. This evaluation is performed by applying

the underlined criteria developed in Section IV. Only the criteria which

are applicable to WS 8506 are utilized in this section. The evaluation

of both WS 8506 and MIL-STD 1679 will categorize the two documents as

follows:

- No coverage.

- Inadquate coverage.

- Adequate coverage.

- Excellent coverage.

In addition to the evaluation against the criteria, comments will be

made about various sections of the documents, where appropriate.

20

TABLE 1
WS 8506 EVALUATION

Criterion WS 8506 Status

A. Design Approaches.

1. Modularity. Adequate coverage in Sec. 6.2, Cam-
puter Program Design Specification
Detailed Requirements.

2. Change procedure. No coverage.

3. Independence of code, No coverage.
data and data base.

4. Separation of software Adequate coverage in Sec. 5.2,
functions by anticipated Computer Porgram Performance Speci-
degree of change. fication Detailed Requirements.

B. Specification and Documen-
tation Requirements.

1. Specification of Excellent coverage throughout.
documentation.

2. Consistent documentation. Excellent coverage throughout.

3. Readability. No coverage.

4. Design reviews and No coverage.
walkthroughs.

5. Identification of Adequate coverage in Sec. 5.2., Com-
performance require- puter Program Performance Specifica-
ments. Detailed Requirements.

C. Test Requirements and
Relationship to Specification
Documentation and Design.

1. Statement of product Adequate coverage in Sec. 11,

assurance methods. Computer Program Test Plan.

2. Documentation standard. No coverage.

3. Use of documentation Excellent coverage throughout.
examples.

4. Regression testing. No coverage.

21

L ow,

TA~BLE 1 (Continued)

Criterion WS 8506 Status

5. Undesirable and unexpected No coverage.
event testing, including
stress testing.

6. Repeatability of tests. No coverage.

7. Independent quality control. No coverage.

22

It is not surprising that WS 8506 does not mention the "No coverage"

items in TABLE 1 since these items pertain to technical and management

advances in software which had not occurred when WS 8506 was issued in

November 1971. From a maintenance standpoint the most serious voids

are lack of change procedure; documentation standard, such as HIPO; and

regression testing. The lack of these capabilities impairs traceability.

The use of Data Item Descripti.ons (DID's) to cover these voids might be

considered if WS 8506 is to continue in use for embedded computer systems.

With regard to Item A.1, modularity, there is coverage with respect to

allocating software modules by function, e.g., tracking, but no discus-

sion of structured programming since this technology was not available

at the time of publication.

Other Comments

Comments are made below about various sections of WS 8506 indepen-

dent of the criteria for evaluation which were used in the foregoing.

1. Although computer performance specification is a commonly used

term in military software, it could be inappropriate on two counts:

(1) functional specification would seem more appropriate to connote

the idea of implementing user functional requirements, and (2) the word

"performance" is frequently used to denote performance measurement

(CPU and memory utilization).

2. P. 3-2, paragraph 3.13. The use of the word "operation" seems

inappropriate. Better terminology might be task or process (in opera-

tinq system sense) to denote activity on a program which, in turn, is

implemented with computer instructions.

23

I

3. P. 4-1. Other types of documentation, such as decision tables,

data flow diagrams and direated graphs, could be mentioned.

4. P. 5-1, paragraph 1.2. A matrix would be useful for depicting

function dependencies.

5. P. 5-2, section 3. The distinction among functional, operational

and performance requirements is not clear; some seem to be subsets of the

others.

6. P. 5-3. The various types of documentation should be related in

a heirarchy, possibly with HIPO charts.

7. P. 5-7. The use of state diagrams could be useful for showing

processing states and state transitions.

Paragraph 3.3.N.2. Processing should be related to the use of

data bases.

8. P. 5-10, paragraph 3.4. Discussion of data base; system growth;

recovery; and capacity, storage and time requirements is good.

9. P. 5-11, paragraph 4.1. All tests should be documented.

Paragraph 4.2. Discussion of use of tools and tolerances is good.

Paragraph 4.3. Discussion of acceptance testing and criteria is

good. Should specify which items can be tested by simulation.

10. P. 6-1. Technique for specifying programs is good.

Section 3.1. Allocation of functions to programs is good.

11. P. 6-2. Identification of tasks is good.

Paragraph 3.2. Functional description is good.

Paragraph 3.3. Discussion of allocation of storage and processing

time, sequencing requirements and equipment constraints is good. Figure

6-2 is helpful.

24

Paragraph 3.4. Mention of flow, both control and data is

particularly good.

12. P. 6-7. paragraph 3.4.1. Discussion of interrupts is good.

Paragraph 3.4.2. Discussion of subprogram reference is good.

Paragraph 3.5. Discussion of use of monitor, loader, etc. is

good; even talks about configuration management. Mention of labeling

conventions is good.

13. P. 6-8, section 4. This Quality Assurance section should be

expanded to include discussion of independent quality control group and

organization of the quality control function.

14. P. 7-1. Considering system subroutines in the same light as

subprograms is good. The question arises as to the appropriateness

of program level documentation for operational personnel; the programming

language orientation seems inappropriate. WS 8506 should be updated to

reflect the use of stacks, reentrant code, separation of code and data and

use of concurrent processes.

15. P. 7-3, paragraph 3.3. Discussion of data base usage is good.

16. P. 7-5, paragraph 3.3.1. Discussion of table documentation is

good. The discussion of bit layouts and flags is incompatible with

today's emphasis on use of higher order languages (HOL). This section

should be revised to reflect greater HOL usage. Perhaps the specifica-

tion could be divided into different parts depending upon whether assem-

bly language or HOL is used.

17. P. 7-6, paragraph 3.4. Discussion of I/O formats is good; disc

formats should be added.

25

18. P. 7-8, paragraph 3.5. Description of system subroutine naming

and referencing is good. Might consider use of decision tables for

stating conditions of subroutine use.

19. P. 7-9. Diagram of subprogram relationships is good.

20. P. 8-1, section 8.1. Good-tie back to other parts of specifica-

tion.

Section 8.2. Mention of options good.

21. P. 8-2, paragraph 3.1. Mention of table indexing and initial

condition procedures is good.

22. A list of acronyms would be helpful.

WS 8506 is considered to be well thought out, comprehensive and a very

good specification for the documentation of program development, particu-

larly in view of the early publication date of this document. The

strategy of making each level of documentation responsive to the next

upper level (subprogram design under program design), represents fore-

sight in the use of top-down design prior to the time this term was in

vogue. It cannot be faulted for not including programming technologies

which had not been developed at the time of its publication. However,

the document is less useful for maintenance purposes for the reasons

previously given.

26

VI. EVALUATION OF MILITARY STANDARD MIL-STD 1679

MIL-STD 1679 is of great importance today because it is being con-

sidered for recommendation for adoption as a Department of Defense

software standard, along with MIL-S-52779 as a Department of Defense

software specification, by the Joint Logistics Commanders, Joint Policy

Coordinating Group on Computer Resource Management [21].

The evaluation of MIL-STD 1679 against the applicable criteria

developed in Section IV follows.

27

TABLE 2
MIL-STD 1679 EVALUATION

Criterion MIL-STD 1679 Status

A. Design Approaches

1. Modularity. Excellent coverage in Sec. 5.2,
Program Design Requirements.

2. Change Procedure. Excellent coverage in Sec. 5.11.2,
Configuration Control.

3. Independence of code, data Adequate coverage in Sec. 5.4.1,
and data base. Symbolic Parameterization.

4. Separation of software Inadequate coverage in Sec. 5.1.2.7,
functions by anticipated Adaptive Parameters.
degree of change.

B. Specification And Documentation
Requirements

1. Specification of documen- Excellent coverage. rExamples:
tation. Sec. 5.6.1, Supporting Information

for Program Performance Requirements;
Sec. 5.1.2.3., Applicable Documenta-
tion for Program Performance Require-
ments; and Sec. 6.1, Contract Data
Requirements.

2. Consistent documentation. Adequate coverage in Sec. 4.5,
Configuration Management.

3. Readability. Adequate coverage in Sec. 5.3.10,
Indentation; and Sec. 5.4.4.2,
Comment Statements.

4. Design reviews and walk- Excellent coverage in Sec. 5.9.1.3,

throughs. Design Reviews.

5. Understandability. No coverage.

6. Specification testing. Adequate coverage in Sec. 5.12.3.3,
Documentation Reviews.

7. Implementation indepen- No coverage.
dence of specification.

28

4%!

TABLE 2 (Continued)

Criterion MIL-STD 1679 Status

8. Non-use of optimization Adequate coverage in Sec. 4.2,
techniques. Design Requirements, but inade-

quate coverage in Sec. 5.4.5.1,
Execution Efficiency.

9. Independence of specifica- No coverage.
tion parts.

10. Identification of performance Excellent coverage in Sec. 5.9.1.4,
requirements. Program Design.

C. Test Requirements and Relationship
to Specification Documentation and
Design.

1. Independence of performance No coverage.
specifications and software
design from program design.

2. Use of reuseable modules. No coverage.

3. Statement of product Excellent coverage in Sec. 5.9,
assurance methods. Quality Assurance; and Sec. 5.10,

Program Acceptance.

4. Documentation standard. Inadequate coverage. Only struc-
tured programming (Fig. 1) conven-
tions are used.

5. Use of documentation Inadequate coverage. Only one
examples. Example in Fig. 1, Control Struc-

tures.

6. Regression testing. No coverage.

7. Undesirable and unexpected Excellent coverage in Sec. 5.10.2.6.
event testing including Software Quality Test Stress Testing.
stress testing.

8. Repeatability of tests. No coverage.

9. Independent quality control. Excellent coverage in Sec. 5.9.1.1,
Reporting Level.

29

MIL-STD 1679 includes developments in programming technology and

management, such as structured programming and walkthroughs which have

occurred since the advent of WS 8506. The major deficiencies are that

no mention is made of the need to independently derive performance re-

quirements from user requirements and the need to achieve relative inde-

pendence of the various parts of the system and programs. From a

maintenance standpoint, the former capability is important in order to

achieve traceability. The latter capability is important in order to

localize the effects of maintenance changes. Also, the lack of a regres-

sion testing specification is a hindrance for maintenance because this

type of testing should be performed subsequent to maintenance modifications.

Other Comments

Comments are made below about various sections of KIL-STD 1679

independent of the criteria for evaluation which were used in the fore-

going.

1. P. 1, section 1.2. It is good to have included firmware in the

standard.

2. P. 6, section 4 2. It is good to mention that design complexity

an'! system interdependencies should be minimized.

Section 4.3. It is good to stipulate use of a HOL.

3. Section 4.5. It is good to specify configuration management

for correlating documentation with the program for maintenance purposes.

4. P. 7, section 5.1. It seems inappropriate for the contractor,

alone, to determine program performance requirements.

30

5. P. 8, section 5.1.2.5.c. and d. Same coment as #4. with regard

to intersystem interface and function description.

6. P. 9. section 5.2. Same comment as #4. with regard to program

architecture.

Section 5.2.2.3a. Predicting the rate of interrupt occurrences

would be very difficult.

7. P. 10, section 5.2.3. Seems to be repetitious of Section 5.1.2.5.c.

Section 5.3.1. Use of words "compile-time system" is not clear.

Section 5.3.8. Allowing compiler to generate backward jumps

seems inconsistent with objective of this section.

8. P. 14, section 5.4.3. Numerical conventions should be established

by the government.

9. P. 15, section 5.4.6. Although flow charts may not be a neces-

sary part of documentation, some sort of graphic documentation, such

as block diagrams or control/data flow graphs, should be required in

addition to program listings.

Section 5.5.2. Same comment as #4 with regard to resource management.

Section 5.5.3. Repetitious of section 4.3.

10. P. 16, section 5.5.4. Patches should be disallowed.

Section 5.7. Same comuent as #4. with regard to program

operation.

11. P. 17, section 5.8.1. Should specify the test data to be used

with module testing.

Section 5.8.2. Implies bottsa-up testing. Standard should

not preclude the use of top-down testing.

31

L.

12. P. 18, section 5.8.5. Same coment as #4. with regard to soft-

ware trouble reporting.

Section 5.8.5.1.b. Add the words "and the documentation is

defective" to the end of sentence.

13. P. 19, section 5.8.5.1.d. This could be classified as a specifi-

cation trouble.

Section 5.9.1.2. Participation in audits should start earlier

with user requirements definition.

14. P. 20, section 5.9.1.6. Same comment as #4. with regard to

conduct of tests.

Section 5.10. Program acceptance seems to be based on some

strange criteria, such as unresolved software and documentation errors

and extent of patches.

Section 5.10.2. Should specify how test time is to be determined.

The use of the words "reasonably free" should be defined. It seems that

if the software is stressed beyond its design capacity, the result will

be catastrophic.

15. P. 21, section 5.10.2.7. It seems this section could be more

appropriately named performance test.

16. P. 22, section 5.10.2.8. Perhaps what is meant here is to cut

power rather than secure power.

Section 5.10.3. and section 5.10.3.2. Use of patch limits as a soft-

ware quality test limit is poor.

17. P. 23, section 5.11. Configuration management should include

hardware.

32

18. P. 24, section 5.11.2.3. Same comment as #4. with regard to

Software Configuration Control Boards.

19. P. 26, section 5.12.3.3.b. It would seem more appropriate for

the government to schedule documentation reviews.

Summary

Overall, MIL-STD 1679 appears to be a good software standard for

embedded computer software, primarily because it addresses areas not

emphasized in previous standards (e.g., change control). It seems to

be the best standard available, both for development and maintenance,

although it should be noted that its companion document for DOD adoption,

IL-S-52779, is intended only for software acquisition and is encouraged

but is not mandatory (as of this writing) for use on maintenance contracts.

There are two disturbing aspects of MIL-STD 1679, one of which could have

a serious effect on maintenance; this is the allowance of patches to

the extent of the limits given in Section 5.10.3.2. The other is the

seemingly excessive control and responsibility which is delegated to

the contractor.

33

LIST OF REFERENCES

1. Marvin V. Zelkowitz, et. al., Principles of Software Engineering,
Prentice-Hall, 1979.

2. Weapons Specification WS 8506, Revision 1, Code Ident. 10001,
Requirements for Digital Computer Program Documentation, Naval
Ordnance Systems Command, Department of the Navy, Washington, D.C.
1 November 1971.

3. Military Standard MIL-STD 1679 (Navy) Weapon System Development,
AMSC No. 23033, FSC IPSC, Department of Defense, Washington, D.C.,
1 December 1978.

4. Edward Yourdon and Larry L. Constantine, Structured Design: Fundamentals
of a Discipline of Computer Program and Sytems Design, Prentice-
Hall, 1979.

5. Lawrence J. Peters, "Design Practices to Effect Software Quality,"
Software Quality Management, John D. Cooper and Matthew J. Fisher
(eds.), PBI-Petrocelli Books, Inc, pp. 185-196, 1979.

6. B.P.Lientz, et. al., "Characteristics of Application Software Main-
tenance," Communications of the ACM, Vol. 21, No. 6, pp. 466-471,
June 1978.

7. Kathryn L. Heninger, "Specifying Software Requirements for Complex
Systems: New Techniques and Their Application," Proceedings of
the Conference on Specifications of Reliable Software, IEEE
Computer Society, pp. 1-14, April 1979.

8. Robert R. Hegland, "Flexibility Provisions and Document Type Selection,"
Documentation of Computer Programs and Automated Data Systems,
National Bureau of Standards Special Publication 500-15, Mitchell
A. Krasny (ed.), pp. 19-21, July 1977.

9. Roy A. Young, "Life Cycle Concepts and Document Types," pp. 10-12,
Reference (8).

10. D.J. Harris, "Software Development for Tornado - A Case History from
the Reliability and Maintainability Aspect," AGARD, Symposium on
Avionics Reliability, Its Techniques and Related Disciplines,
Ankara, Turkey, April 1979.

11. Capers Jones, "A Survey of Programming Design and Specification
Techniques," pp. 91-103, Reference (7).

34

-. a

12. Robert Balzer and Neil Goldman, "Principles of Good Software Speci-
fication and Their Implications for Specification Language,"
pp. 58-67, Reference (7).

13. James A. McCall, "An Introduction to Software Quality Metrics,"
pp. 127-142, Reference (5).

14. Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis, "Social

Processes and Proofs of Theorems and Programs," Communications of

the AC4, Vol. 22, No. 5, pp. 271-280, May 1979.

15. C.V. Ramamoorthy, "The Impact of Software Specifications and Design

on Test and Verification Methods," Computer Science Division and

the Electronics Research Laboratory, University of California,
Berkeley, 23 pages.

16. J.F. Stay, "HIPO and Integrated Program Design," IBM Systems Journal,

Vol. 105, No. 2, pp. 143-154, 1976.

17. Glenford J. Myers, Cmposite/Structured Design, Van Nostrand Reinhold
Co., 1978.

18. Richard J. Pariseau, Technical Note, "Improved Software Productivity

for Military Computer Systems Through Structured Programming,"
Report No. NADC-76044-50, 12 March 1976.

19. Norman F. Schneidewind, "The Applicability of Hardware Reliability

Principles to Computer Software," pp. 171-181, Reference (5).

20. Steven W. Oxman, Fiscal Year 1979 CCSMA System-Level Software Mainte-
nance Approach and Transition Plan, (Revision E), Software Systems

Department, Trident Command and Control System Maintenance Agency,

Newport, R.I., March 20, 1979.

21. Report of the Panel on Standards for Software Quality, Joint Logistics

Commanders, Joint Policy Coordinating Group on Computer Resource

Management, Software Workshop, Monterey, CA, April 1979.

35

DISCLAIMER

The opinions expressed in this report are strictly those of the

author and do not necessarily reflect the opinions of the Naval Post-

graduate School, Department of the Navy, or Department of Defense.

36

* Dv

DISTRIBUTION LIST

No. copies

Prof. Victor Basili
Department of Computer Science

University of Maryland
College Park, MD 20742

Mr. Laszlo Belady
IBM Corporation (VAL)
Old Orchard Road
Armonk. NY 10504

Dr. Barry Boehm
Software Research and Technology
Defense and Space Systems Group

TRW
One Space Park
Redondo Beach, CA 90278

Dr. Ned Chapin
Info Sci, Inc.

Box 7117
Menlo Park, CA 94025

Mr. John Cooper
Anchor Software
4111 Century Court
Alexandria, VA 22312

Prof. Lyle Cox
Code 52C1
Computer Science Department
Naval postgraduate School
Monterey, CA 93940

Mr. Barry Deroze
TRW/DSSG
Mail Station R2 1410
One Space Park
Redondo Beach, CA 90278

Mr. William Ferrara
Trident CCSMA
Building 12
U.S. Navy
Newport, RI 02840

37

Dr. Matthew Fisher
No. 1 Violante Court
Eatontown, NJ 077!4

Mr. Jan Fr~nlund
TELUB AB
Ljungadalsgatan 2, Box 1232
SE-351 12
Vaxjb, Sweden

Mr. Tom Gilb
Infotect
Iver Holters Vei 2
N-1410
Kolbotn, Normway

Mr. Gerald Goulet
.aval Air Development Center
Warminister, PA 18974

Dr. Robert Grafton
Code 437
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217

Ms. Kathryn Heninger
Naval Research Laboratory
Information Processing Systems Branch
Comunications Science Division
Washington, DC 20375

Prof. Melvin Kline
Code 54Kx
Administrative Sciences Department
Naval Postgraduate School
M.onterey, CA 93940

Mr. Robert G. Lanergan
Raytheon Company
Missile Systems Division
Hartwell Road
Mail Stop BLA 1-4
Bedford, MA 01730

Prof. Bennet Lientz
Graduate School of Management
University of California
Los Angeles, CA 90024

38

LTC Casper H. Lucas
HQ, AFLCILOEC
Wright-Patterson AFB, OH 45431

Prof. Norman Lyons
Code 54Lb
Administrative Sciences Department
Naval Postgraduate School
Monterey, CA 93940

Mr. Paul A. Mauro
Hughes Aircraft Company
Bldg. 618, Mail Stop B218
P.O. Box 3310
Fullerton, CA 92634

Mr. Jim McCall
GE Space Division
1277 Orleans Drive
Sunnyvale, CA 94086

Dr. Edward Miller
Software Research Associates
P.O. Box 2432
San Francisco, CA 94126

LCDR Ronald W. Modes
Code 52Mf
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940

Mr. John B. Munson
Corporate Software Engineering
System Development Corp.
2500 Colorado Ave.
Santa Monica, CA 90406

Mr. John Musa
Bell Telephone Laboratories
Rm. 3A332
Whippany Rd.
Whippany, NJ 07981

Dr. Peter Neumann
SRI International, EL 301
Menlo Park, CA 94025

39

......____ ___ _ U

Mr. Steve Oxaan
Trident CCSMA
Building 132T
U.S. navy
Newport RI 02840

Mr. Richard Pariseau
Naval Air Development Center
Warminister, PA 18974

Dr. David Parnas
Information Processing Systems Branch
Communications Science Division
Naval Research Laboratory
Washington, DC 20375

Prof. C.F. Ramaoorthy
Department of Electrical Engineering
and Computer Science
University of California
Berkeley, CA 94720

Prof. Norman F. Schneidewind 10
Code 54Ss
Administrative Sciences Department
Naval Postgraduate School
Monterey, CA 93940

Dr. John Stancil
Trident CCSMA
Building 132T
U.S. Navy
Newport, RI 02840

Dr. Leon Stuki
Boeing Computer Services
Seattle, WN 98124

Mr. David M. Weiss
Information Processing System Branch
Communications Science Division
Naval Research Laboratory
Washington, DC 20375

Prof. Roger Weissinger-Baylon
Code 54Wr
Administrative Sciences Department
Naval Postgraduate School
Monterey, CA 93940

40

4 e
. ' • . - - 11 "- l~l -- , " .j• -' ' 1 ' " := -

Prof. Steven Yau
Department of Computer Science
Northwestern University
2001 Sheridan Rd.
Evanston, IL 60201

Prof. Marvin Zelkowitz
Department of Computer Science
University of Maryland
College Park, MD 20742

AS/OR Library

Code 54/55
Naval Postgraduate School
Monterey, CA 93940

Computer Center Library 2

Code 0141
Naval Postgraduate School
Monterey, CA 93940

Computer Science Department 2

Code 52
Naval Postgraduate School
Monterey, CA 93940

Defense Technical Information Center
2

Cameron Station
Alexandria, VA 23314

Knox Library
4

Code 0142
Naval Postgraduate School
Monterey, CA 93940

Office of Research Administration

Code 012A
Naval Postgraduate School
Monterey, CA 93940

41

